On creativity and science – and play!

A couple of weeks ago, I posted about the notion of “creative nonfiction”, and about the relationship between creativity and scientific writing. In the talk I linked to there, I made an offhand comment about how the practice of science also involves creativity. I’d forgotten that I’d actually written about that, way back in 2015! So the rest of this post is a lightly edited version of that earlier piece. Yes, if you blog long enough, you forget what you’ve written…

Much of science is a craft: doing it well involves the application of practiced skills, which can be honed (if never completely mastered) by anyone with time and experience.  In an experiment, for example, we have powerful experimental design, meticulous repetition and recordkeeping, appropriate statistical analysis, and clear writing to report the results – all things we can become objectively better and better at with practice. And much of this is – deliberately – very far from creative. Doing the math of an ANOVA the same way every time, or pipetting reagents the same way every time, isn’t creative – but it’s necessary. All this means that we often give the impression that the actual practice of science is mostly rote.

But there’s creativity in science too, and it lies in the source of our ideas.  This part of science is much more mysterious. If running an experiment is craft, coming up with the idea for one is art.  If testing a hypothesis is craft, formulating an important one is art.  If solving a model is craft, specifying one that captures interesting biology is art.  Where do our ideas come from?  I suspect most of us haven’t a clue.  If someone asks me how I run an experiment, I can tell them; but if someone asks how I think of an experiment to run, I’m usually stumped*.

We may not know how our creativity works, but we seem pretty sure that it should precede our craft.  That is, we tell students that collecting data until without knowing what hypothesis they address, and why it’s important, is pointless at best and quite likely a waste of time and resources.**  I tell my students this all the time.  I also tell myself I believe it.

And yet…might there be room in science not just for creativity, but for play?  What I mean by “play” is an experiment (or an observation, or a model) that one conducts without an identified purpose in mind –without knowing (yet) why it matters, or what hypothesis it’s testing. Maybe it’s play, or maybe it’s an extended bout of creativity, but either way, it’s non-canonical (to put it mildly). You’d never get a grant to support such an experiment, and you’d never admit to your supervisor, your colleagues, or your students that you were doing it.  I allowed myself to play at least once, though, and it worked out pretty well.

I ran my play experiment when I was still a PhD student.  I had become (somewhat vaguely) interested in flies that breed in decaying mushrooms***. These tend to be pretty diverse, despite little obvious resource partitioning and intense local competition in some mushrooms (while others go unexploited).  One possibility is that competitors can coexist in the system via some kind of spatial mechanism.  In particular, larval aggregation (large numbers of larvae on some mushrooms, and very few on others) could, theoretically at least, allow competitors to coexist without resource partitioning.

I thought the mushroom-fly system was interesting, and I started tinkering – in between bits of my actual PhD research.  I bought some ordinary white mushrooms at the grocery store, left a few out in the forest, and found that Drosophila females would locate and lay eggs on them.  Then, for some reason, I decided to scale this up.  I put out arrays of 30 mushrooms, with three different spacings: 5 cm between neighbouring mushrooms (photo, right), 30 cm (photo, left), or 150 cm.  After a few days, I brought them all back to the lab, dissected them, and counted the Drosophila larvae in each one.

Why did I run an experiment with a spacing treatment?  I didn’t know; I just wanted to see what would happen.  That sounds lame even to me, but once I had the data in hand, something interesting happened. In my closely-spaced arrays, every mushroom had a few larvae (little aggregation); but in my distantly spaced ones, many mushrooms were unexploited and a few were teeming with larvae (strong aggregation).  I hadn’t expected such an effect (or anything else, really), but it made me very excited – because it suggested the possibility that competitors might coexist more easily when resources were scarce (my distant arrays) than they were abundant (my close arrays).  If you aren’t an ecologist, trust me – this is just as counterintuitive as it sounds!

After repeating the experiment in two more years (with similar results), I published it here (it’s paywalled, but I’ll send you a PDF if you like). Even better, this counterintuitive notion of competition relaxing when resources are scarce was just begging for theoretical exploration, which I did (with my first grad student!) here, here, and here.  Collectively, those papers have been cited 150 times – not rock-star numbers, but not bad for something that started in play.  I’m especially pleased with the last one, in which we extended the aggregation idea to consider ways herbivore-plant systems might be stabilized. I think that’s an important idea (even if the paper – definitely my “most undercited paper” – hasn’t gotten the attention I think it ought to).

I haven’t spent the bulk of my career running experiments just for play, and I don’t think you should either.  But my experience suggests that a bit of scientific play, some creativity running unchecked, might once in a while (maybe more!) lead us to unexpected and otherwise undiscovered insight.

© Stephen Heard  September 20, 2022

Photo: Mushroom arrays on the forest floor in a “play” experiment. Own work, CC BY 4.0.

*^Well, not completely stumped. I can say that a remarkable large fraction of my new ideas come to me in the shower.  For whatever reason, I think well and creatively there, and the SCUBA notebook I keep there is nearly as important as the shampoo.

**^Maybe that’s a little strong – as a counterpoint, read what Manu Saunders has to say about happenstance observation in ecology.  But I still tell students that they need to start with an idea, a question, and a hypothesis.  Happenstance data are a bonus, not a cornerstone strategy for research.

***^Ecologists are a peculiar breed.  There, I saved you saying it.


1 thought on “On creativity and science – and play!

  1. Pavel Dodonov

    I think it makes a lot of sense to do something without a well-defined hypothesis, question or reason – sometimes it might just be an intuition which we cannot justify just then, but turns out into something meaningful. Something similar happened on my undergrad research: in addition to measuring live plants, I also measured dead ones even though they no longer contribute to the population and at least one person told me I was wasting time, and they turned out really important for the study. So, maybe we can also speak of trusting your intuition when doing science? 🙂



Comment on this post:

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.